On Concepts of Directional Differentiability
نویسنده
چکیده
Various definitions of directional derivatives in topological vector spaces are compared. Directional derivatives in the sense of G~teaux, Fr6chet, and Hadamard are singled out from the general framework of cr-directional differentiability. It is pointed out that, in the case of finite-dimensional spaces and locally Lipschitz mappings, all these concepts of directional differentiability are equivalent. The chain rule for directional derivatives of a composite mapping is discussed.
منابع مشابه
Properties of eigenvalue function
For the eigenvalue function on symmetric matrices, we have gathered a number of it’s properties.We show that this map has the properties of continuity, strict continuity, directional differentiability, Frechet differentiability, continuous differentiability. Eigenvalue function will be extended to a larger set of matrices and then the listed properties will prove again.
متن کاملMultivector Functions of a Multivector Variable ∗
In this paper we develop with considerable details a theory of multivector functions of a p-vector variable. The concepts of limit, continuity and differentiability are rigorously studied. Several important types of derivatives for these multivector functions are introduced, as e.g., the A-directional derivative (where A is a p-vector) and the generalized concepts of curl, divergence and gradie...
متن کاملSensitivity analysis for nonsmooth generalized equations
Results pertaining to Lipschitzian and directional differentiability properties for solutions to generalized equations under very general perturbations are obtained with the aid of new differentiation concepts for multivalued maps.
متن کاملFréchet directional differentiability and Fréchet differentiability
Zaj́ıček has recently shown that for a lower semi-continuous real-valued function on an Asplund space, the set of points where the function is Fréchet subdifferentiable but not Fréchet differentiable is first category. We introduce another variant of Fréchet differentiability, called Fréchet directional differentiability, and show that for any realvalued function on a normed linear space, the se...
متن کاملThe Differentiability of Real Functions on Normed Linear Space Using Generalized Subgradients*
The modification of the Clarke generalized subdiNerentia1 due to Michel and Penot is a useful tool in determining differentiability properties for certain classes of real functions on a normed linear space. The Glteaux differentiability of any real function can be deduced from the GBteaux differentiability of the norm if the function has a directional derivative which attains a constant related...
متن کامل